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ON-LINE FAILURE DETECTION AND DAMPING MEASUREMENT OF
AEROSPACE STRUCTURES BY RANDOM DECREMENT SIGNATURES

By Henry A. Cole, Jr.
Nielsen Engineering & Research, Inc.

SUMMARY

Random decrement signatures of structures vibrating in 'a random
environment are studied through use of computer-generated and experimental
data. Statistical properties obtained indicate that these signatures are
stable in form and scale and hence, should have wide application in on-line
failure detection and damping measurement. On-line procedures are described
and eguations for estimating record-length requirements to obtain signatures

of a prescribed precision are given.

INTRODUCTION

The risk of total failure of an aerospace structure is usually kept
small by frequent inspections, but the cost is high1 and use of the vehicle
is lost Juring the inspection period (ref. 1). This may be particularly
critical during the ini*ial debugging period in which a failure in a
single vehicle may cause grounding of an entire fleet and create bottle-
necking in the inspection process. Much of the problem could be resolved
if ar onboard warhing system could be developed which could detect incip-
ient failures and indicate an individual inspection time for each vehicle. .
However, for such a system to be effective, it would have to avoid false
warnings which might lead to unnecessary inspections and loss of operational

capability.

The question is "How could flaws in the structure be detected when
the vehicle is in service?" Visual inspection is obviously too incomplete
without access to critical structural areas. Monitoring of acoustic
emissions may be a possibility, but ambient noise sources are often so
large that it would be difficult to detect the additional noise emanating

from a small flaw. Another possibility is to analyze the structural

!Cost of inspection and repair of fatigue cracks alone in lifetime of a
commercial airliner is of same order of magnitude as initial cost.



vibrations themselves and to look for éhanges in vibration characteristics. .
For example,; in réference 2, the autocorrelation function of random
vibrations was observed to change with the development. of a fatigue crack
in the structure,see figure 1. Unfortunately, the autocorrelation function
also changes with variations-in the random environment and false warnings-.
of failure would be a problem under in-service operating conditions. ~--
Theoretically, the problem of chanées of the signature due to changes in
the input environment could be overcome by measuring both the input forces
and the output vibrations and calculating cross-spectra or cross-correlations
as described in references 3 and 4, but this is extremely difficult to do
in practice because the input ﬁQrcesfotcur at so many poigts tﬁat they are
almest impossible to measure. The problems with spectral and correlation
methods are further compllcated 1f the structure has nonllnear damping w1th
amplitude which is often the case (ref. 2).

From the above it should be apparent that adaptation of methods which .
work under controlled or: "laboratory" conditions to "in-service' conditions’
presents the difficult problem of distinguishing between changes caused by
normal environmental effects and those due to flaws. Progress in solving
this problem was reported in reference 2 in which variations in autocor-
relation signatures were reduced by cross-correlation of the output signal
with a stratified output signal. ' The results led to development of the
random decrement method which is the subject of the present rebort. In
this method, reference 5, segments of a random time history which start
at a constant amplitude are selected by logic circuits and are averaged
to form a curve which is called a "randomdec signature". To implement the
method, a high-speed dlgltal computer was built at Ames Research Center
(ref. 6), and applied to a wind-tunnel wing model Whlch was tested to
destruction. Resilts lndlcated that the random decrement 51qnature
remained relatively 1nvar1ant untll an incipient failure occurred in the
wing at which time the signature underwent significant changes which
could be used in a failure detection system. A

Another aspect of the use of randomdec 51gnatures is in the measure-
ment of damplnq”wh;ch has applications in flight and wind-tunnel flutter - -
tests and in prediction of response of structural modes. Damping is

obtained in the same way as from a free vibraticn decay since .the randomdec -
signature is representative of the free vibration decay curve which would
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be obtained if the point on the structure were displaced to the selected
amplitude and suddenly let go. For single-degree-of-freedom linear systems
excited by white noise, the randomdec signature is identical in form to the
autocorrelation function, but for multi-degree~-of-freedom systems and non-
linear systems, it differs in that the troublesome cross products (i.e.,
off-resonant vibrations mentioned in ref. 7) are -absent. This should
greatly simplify the separation of modes which occur at nearly the same
natural frequencies and allow use of methods such as reference 8 rather

than the more complicated procedure of reference 7.

Practical application of any signature method requires a knowledge of
the precision of the signature for a giﬁen record length. To establish
this for randomdec, a digital computer program was written which generated
random time history responses of a specified mathematical model and ‘then
calculated the randomdec signature including its variance. These results
have been analyzed and presented in the present repcrt to show how the
random decrement method can be applied in practical problems of failure

detection and damping measurement.

LIST OF SYMBOLS

AVG signature with an initial displacement and a positive slope
(see fig. 23)

AVH signature with an initial displacement and a negative slope
(see fig. 23)

AVT randomdec signature obtained by averaging AVG and AVH

C amplitude of signature at 1 = 0 due to distortion of input or

filtering (see fig. 20)

0 due to structural mofion

c, amplitude of signature at 1 =
(see fig. 20)

f frequency, Hz

fn undamped natural freguency of a structural mode, Hz

G(Q) value of time history Q time units after y = Vg with a positive
slope (see fig. 23) .

G(£f) spectral density (defined on fig. 2}

Eﬁ linear regression of G(16) with constant H



H(Q)

fesi |

2z

y(t)

<

value of time history Q time units after y = Y with a
negative slope (see fig. 23)

linear regression of H(16) with constant G

number of peaks encountered for a selection level, Yg

number of digital points in a time history

number of individual segments used in randomdec signature (figs. 2
and 3) or number of cycles on signature used to calculaté ¢ ©On
figure 12 :

period of oscillation, time units

number of time units after vy = Yoo abscissa of randomdec digital
signatures

autocorrelation signature defined on figure 2

correlation coefficient estimate

sample rate, samples per second
record length, seconds
ﬁime, seconds

time for which vy = y numbered by subscript n (fig. 3) -

s
émplitude of time history at time t

randomdec signature values from digital program

selection level
defined on figures 2 and 3

randomdec signature defined on figure 2
damping ratio

damping ratio estimated from a signature
rms of filtered time history
rms of unfiltered time history.

rms of y




o rms of random input

r
OE standard deviation of randomdec signature at @  time units,
. K K
o = Z Gile) + Y HI(Q)| - AVT?(0)
T time lag, Q/SR
w frequency, radians per second
W, undamped natural frequency, radians per second
w frequency of filter half power point, 3 dB point, radians per

second
INTERPRETATION OF THE RANDCOMDEC SIGNATURE

In this section the basic concept of the randomdec signature will be
deveioped as well as the intuitive reasoning which distinguishes the
random decrement signature from other signatures. As was mentioned in the
introduction, cross-correlation and cross-spectral methods which require
measurement of the input forces are not considered to be practical under
in-service conditions. Consequently, it will be assumed that the only
measurement available is the output response of a strain gage or acceler-

ometer located at a suitable point on the structure.

”A typical'random response df the tr&nsducer is shown on figure 2.
Such responses are typical of infservipe conditions of an aerospace
structure in flight or during landing or takeoff on a runway. The random
response curve itself is so complicated and variable that it cannot be
used to detect changes although all of the information is contained within
this time history. Various analyses may be performed on this curve to
condense” the information intc a meaningful signature. One well-known
technigque shown on figure 2 1is the spectral density which may be obtained
directly from an ensemble average of the absolute amplitude squared of
the Fourier transform of N " segments of the time history. The resulting
signature has a peak for each structural mode; and for well-separated
peaks, the damping ratio of the mode may be obtained by measuring the
width of the peak at half the peak value. This so-called bandwidth of



the half-power point is equal to 2£fn. Also, the integral of the power
spectral density is equal to the mean square value. Hence, the spectral
density signature is useful in obtaining a broad picture of the frequencies
of the structural modes, the energy in the modes and the approximate damping
of isclated modes. However, the main problem of its use as a failure
detector is that it is very dependent on the input as shown by the following

equation from reference 4.
- 2
Gy(f) = |H(f) ] G, (£)

in which H(f) 1is the transfer function of the structure and Gx(f) is
the spectral density of the input forces. It may be seen that the ampli-
tude and form of the output spectral density Gy(f) are dependent on the
amplitude and form of Gx(f) which in our case is unknown. Hence, Gy(f)
is only truly representative of the structure if Gx(f) is a constant
(white noise). '

Another dynamic signature shown on figure 2 is the autocorrelation
which has been used extensively in on-line applications described in ref-
erence 2. For isolated modes, the signature has the same form as the free
vibration decay curve of a structure with an initial displacement and may .
be interpreted as such to obtain period and damping of the mode. The
autocorrelation is less sensitive than spectral density to variations in
the spectral form of the input. 1In reference 2 the distortion of the
signature due to the input is shown. The main problems with autocorrelation
as a failure detector are that the level, y?, is dépehdent on the intensity
of the input amplitudes and the signature will vary with the inéut if any
nonlinear damping is present. The autocorrelation function may be used
for measuring damping of isolated modes as was shown in reference 2, and

for multi-mode applications in references 7 and 8.

The random decrement signature shown on figure 2 has an appearance
similar tec autocorrelation, but it has many properties which make it more
useful as a failure detector. The first is that the signature has a
constant-amplitude, Ygr which represents a calibrated displacement of the:
structure. This is important because it fixes the level of the signature
and makes it independent of changes in intensity of the input. Also, if
the structure has nonlinear damping with amplitude, the fixing of ampli-
tude stabilizés the form of the signature. Another property is that
6



the signature has the same dimensions as the original time history since

no multiplications are performed Consequently, in multi-mode applications
troublesome cross products of modes are av01ded and in application§ where
the input spectral den51ty is not flat, the signature distortion is
considerably less.. Other-more subtle propertles w1ll become apparent in

later sections of the report

Although the equation on figure 2 describes the process, a better
feel for the extraction of the signature 1s obtained by graphically
performing the process as shown on figure 3 Flrst the selection level,
Yoo is set. Each time-the curve passes through Yo (t) = 0, a segment of
the curve is placed in summation. The flrst two segments are shown on
the figure, one with an initial condltlon of a plus slope and one with
an initial condition of a minus slope. The average of these two is the
signature &{(t) for N = 2. BAs more samples are taken, the signature
converges to a form as shown for N = 100. For a singie-degree-of-freedom
system the value 1 = P would be the period of oscillation. For this
partlcular value of 171, a histogram of the number of points at various
revels is shown. This tends to be normally distributed about $(P), and
as w111 be shown in Appendix A the standard dev1atlon,o£, is small and is
almost independent of the damping ratio. In failure detection devices we
can=use the standard dev;atlon,oe, to set a confldence level according to
the number of false alarms which we are willing to accept; and in damplng
measurements we can use’ 1t to spec1fy the record length needed to obtain

damplng of a spec1f1ed accuracy

Another interesting aspect of the random decrement process is shown
on figure 3(b) which shows the distribution of time between the samples
selected. - If the time history were a sine wave, the samples would be
taken periodically. For a narrow band process, such as shown nere, the
samples are taken with a random distribution in time about the period of
the systém. For a white noise time history, one might expect that samples

would be taken'completely at random.

» Now the question is "How is the signature related to the structure?"
A hypothesis for linear systems is shown on figurevé, This shows the
process as the linear superpcsition of a step, anvimpulse and rendom
response for each segment of the.time history selecred.r In other words, .

the step represents the homogeneous solution to an initial displacement,



the impulse repfesents the homogeneous solution to an initial velocity,
and the random response represents the particular solution to random
inputs which occur during the sample segment. It may be seen that all
of the step responses are the same, whereas the impulse responses have
initial slopes with alternate plus and minus values of varying magnitude.
The random responses are of course random. When a large number of the
segments are averaged, only the step response is left because the impulse
and random responses tend to average to zero. If the inputs do not have
a zero mean, then the signature obtained will still start at Yo = 0 but
will not end at —ys. In other words, the signature will be for a loaded
structure, and this must be taken into account in the interpretation
(i.e., Vg should be selected as the deflection from the equilibrium
position.) Of course, signatures could be obtained by taking only seg-
‘ments with an initial slope of a plus value, but then the signature would
vary with intensity of the input amplitude.

For nonlinear systems, the superposition érguments cannot be used
so that an exact interpretation of the relation of the signature to the
structure cannot be made at present. It seems likely though that for
small damping, the signature should be close to the free oscillation
curve for the nonlinear system. For failure detection, the important s
thing is that the curve should be repeatable under various ambient

conditions.

It is guite apparent that considerable work needs to be done in
going backward from the signature to the mathematical equations which
define the system. This is not the present purpose. The signatures do
‘provide a check on the linearity of a system if multiple selection levels
are used. Alsoc with multiple selection levels, the multiple signatures
which are obtained should provide a print which would uniquely identify
the system and provide a standard for failure detection.

ON-LINE FAILURE DETECTION

From the foregoing section it was shown that the randomdec signature
gives a curve which is related to the free vibration decay of the structure
with an initial dispiacement. The scale and form of this curve is always
the same even when the intensity of the ambient random forces changes in



contrast to spectral density and autocorrelation which vary with changes
in the ambient random forces. In this section, the hypothesis and appli-

cation of the method to failure detection is developed.

A typical experimental setup is shown on figqure 5. It should be noted
that although the spectral analyzer is not part of the failure detector, it
still serves a purpose in providing a broad view of the location of struc-
tural modes which may be used as an aid to specifying filtering reduirements.
Let us consider now what happens to the signature when a fétigue crack
develops in a structure. A fatigde crack introduces additional degrees of
freedom which are excited by the random forces. When the crack is small,
small blips would show up_iﬁ the hashy, high-modal density region of the
spectral density; in this form detection would be difficult. As the flaw
grows, the freguency of the failure mode would be expectéﬁ to decrease 7
until it aonroachesxthe fundamental modes. By the time a flaw reaches the
low-frequency range it would be so serious that it would either be obvious
or complete failure would be imminent. To detect the failure mode it needs
to “be intercepted at a high enough frequency so that corrective action can
bettaken and complete failure avoided. To do this the random signal is
passed through a band-pass filter which is set at a high frequency. With
the undamaged structure, standard randomdec signatures are established for
all loading conditions and environments. If a failure develops, it will 7
have a powerful effect on the s.gnature because it will dynamically couple
with structural modes within the band-pass fregquencies. of the filter. For
the failure detector, once the standards have been established only parts
of the signature at peaks need to be calculated with warnlng devices

sensitive to voltage changes in the peak values.

A procedure for failure detection is outlined on figure 6, which
shows only a single peak for illustration. The standard signature region
is first established to a confidence level consistent with percent of false
alarms which could be tolerated. For the 95-percent confidence level
shown, of course, false warnings would occur 5 percent of the time.
Detection would be as shown on the figure. The check on standard deviation,
O is to prevent false indications due to extraneous input sources other
than the normal rardom excitation, i.e., a sinusoidal force or signal in
the electronics. For example, if a sinusoidal force were applied to the
structure, the signature would become an undamped cosine wave and fall
outside the standard region, but the standard deviation would fall to zero.

9



In this case the amber light would go on. In the on-line computer built
at Ames Research Center this check on 0. Wwas not included and may not

be necessary unless a high level of reliability of the device is desired.

Experiment‘withrTruss

Some laboratory experiments were conducted to check the sensitivity
of randomdec signatures. Figure 7(a) shows the experimental setup with a
truss structure with bolted joints. Figure 7(b) shows the spectral density
of the output of the accelerometer. The amplitudes were so small that they
could not be detected visually, but were apparent from the emitted sound
and fingertip feei. From the spectrum several frequency ranges were
selected as ‘suggested on flgure 5. Ranges where a distinct peak followed
by a distinct valley were selected since it Qas felt that these would
result in signatures with distinct peaks. The aim of the test was to see
if a difference between tight end loose bolts at ﬁoint A-B could be
detected. For the filter range 600-800 Hz, the spectral densities for
bolts tight and loose are shown on figure 7(c). The difficulty in dis-
tinguishing between the twec curves is obvious. For the same data set,

the signature obtained from the randomdec computer is shown on figure 7(d)

and the change in the signature is readily apparent. Similarly, for the
frequency range 1100-1300 Hz (fig. 7(e)), the change in the rendomdec
signature is apparent but not as distinct. This experiment"was not-
extehsive, but it points to one of £he key problems in failure detection.
That is, a particular frequency range:and transducer location may be best
for detection of a particular flaw. Obviously, experience is needed with
different failure mechanisms in order to establish the standard 51gnature
which should be used in the detection device.

" Experiment with Flutter Model

Aﬂofher example of failure detection with the randomdec computer wéé
reported in reference 6 for a and tunnel model underg01ng flutter
Instrumentation of the model consisted of strain gages at the root as
indicated on figure 8. Randomdec signatures taken at intervals are shown
for a frequency range above the natural frequencies of the first three
modes. For the first 2 minutes and 45 seconds the signatures fell within

the narrow'rahge indicated by:the "standard." The signature then underwent
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a sequence of large changes until finally the wing failed and the signal
stopped. It is apparent from this sequence that the randomdec signature
was sensitive to an incipient failure in the wing which occurred a con-
siderable time? before the wing failed completely. The changes in the
signature are sufficiently large to enable a failure detector utilizing
the voltage of a point on the second peak to anticipate the failure. The
importance of selecting the proper frequency range is emphasized by
figure 8(b) which shows the signatures obtained from the unfiltered time
history. Although changes in the éignature are apparent, the Voltage
changes are not sufficiently large to be used in a failure detector.

Figure 9 shcows samples of the time history taken at the same times
as the signature. This demonstrates the complexity of the original signal

from which the signatures wefe obtained.
MEASUREMENT OF DAMPING

Damping measurements are important for prediction of structural
response, definition of flutter boundaries, and detection of malfunctions
of dampers in fiight (i.e., stability augmentation systems, engine shock
mouhts, etc.). On-line monitoring of such systems could contribute to
fli%ht safety since there are many cases of accidents involving engine
mount dampers. Also, 1if present-day propcsals for systems to control
flight flutter are implemented, on-line damping monitoring systems will
be needed for flight safety.

On-Line Measurement

In flight and wind-tunnel flutter tests such as described in ref-
erence 2, damping values are needed as soon as possible, As shown in
Appendix A, for a single-degree-of-freedom system the randomdec signature
may be used directly to extract damping ratios. Of course, real systems
alwavs contain many modes and several techniques are followed to reduce
the response to an effective single-degree-of-freedom system. These are

discussed later in the section on experimental procedures. For the

20n a full-scale vehicle, warning time would have been 7-1/2 minutes.
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present we will assume that the signal has been effectively reduced to
that of a sinéle—degree-of-freedom system. When this has been done, and
no distortion is present due to filtering or spectral shape of the input,
the damping ratlo may be read dlrectly on the oscxlloscope by putting a
damping ratio scale on the peak as shown on figure 10(a). Sometimes it
is useful to set the scope sweep faster than the signature sweep as shown
on figure 10(b) so that the beginning part of the signature also apéears
at the end of the signature. Small changes in damping and frequency may

easily be detected by viewing this region.

Oftentimes, it is desirable to know if nonlinear effects with ampli-
tude are pfesent. This can be done on line by superimposing signatures
with different selection levels as shown on figure 11. 1In the example
shown the selection level of one signatﬁre is one half that of the other.
To allow direct compariscon of the'signatures then, the 0.5v signature
is multiplied by 2 in the display. '

As is shown in Appendix A, the signatures are sometimes distorted by
filtering and spectral variations of the input. When this occurs, damping
ratio should be measured as shown on figure 12 which was obtaiﬁed from‘the
well-known eguation: '

Y, = =271Ng

PN e

This process, although not a direct readout method, may be performed
rapidly during a test and compensates for most severe distortion problems.
If a Gerber variable scale is used, the yz/y; ratio can be measured
directly without performing the division.

A somewhat slower alternate method is shown on figure-13l This method
may be used if time is available for ﬁlotting points and if an estimate of
the distortion as in reference 2 is desired. The distortion usually occurs
in the first two p01nts so a stralght line is faired ignoring these’ p01nts
The equation for damping ratio shown on the figure is obtained by assumlng

1 - z? to be negligible and solving for ¢ in the equation above. Thus

1n Y, - In Y, - _ ~
¢ = 2TN '
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To convert the logarithms to a scalar measurement we multiply by 1n lO/XO
in which xo is the scalar length of one decade on the logarithm scale

used. The equation becomes

. = 2.3026 X
2n NXO

in which X is the scalar distance representing the difference in __

logarithms as shown in the example.

Several useful rule-of-thumb methods for obtaining damping ratio are:

YI-YQ
-
for small ¢ and v, = 1. Note that if a variable scale is used y, can
be set to 1 and vy, - v, measured directly.' And
1
{::__
9.08C1/2
where C is the estimate of the number of cycles to half amplitude.

1/2
Off-Line Measurement

Usuallv random time histories arevrecorded on magnetic tape: and
following a test, accurate values of damping are wanted for use in response
prediction. Several examples of damping measurement were worked out on
experimental data obtained by the Aeronautical Stfﬁégﬁres ﬁranéﬁigéiiﬂes_hr
Research Center from vibration of a 0.2286- by 0.3048-meter panel 0.00235-
meter thick in a turbulent boundary layer at Mach numbers from 2.5 to 3. 7

-

Figure 1l4(a) shows the spectral density for an isolated mode obtained
by Fast Fourier transform of 4098 points taken at a sample rate of 8000
samples per second. The difficulty of measuring damping by measuring the
bandwidth of the half-power point is obviocus. Figure 14(b) shows the
randomdec signature for the same data set with damping measurements
obtained by the method of fiqure 12. Note the consistent values of Last

for N=1, 2, and 3.
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Using equation (A-8) in Appendix A at a confidence level of 95 per-
cent, the fractional error is

F o= 1.96 = 0.55

C‘ vV (0.51) (4) (0.008) (771)

Values of ¢ measured on four such signatures were 0.007, 0.006,
0.007; 0.010, 0.011, 0.012; 0.007, 6.007, 0.007; and 0.009, 0.009, 0.009
which fall within the predicted range of 0.0083 #0.0046. The consistency
of values for N =1, 2, and 3 and the range of values lends confidence
to the record length predictions for ideal single-degree-of-freedom systems
which were obtained in Appendix A.

Figure 15(a) shows the spectral density of two modes which could not
be separated by filtering without excessive distortion of the signature.
The randomdec signature is shown on fiqure 15(b) and it may be seen that

the values of g are increasing with N which indicates that a beat

phenomenom is preiZEt. Conseguently, the damping values shown should not
be used in prediction, but the damping values of the separate modes should -
be extracted from the signature by a method such as described in ref-

erence 8. Note that methods such as reference 7 for autocorrelation do

not apply to randomdec signatures.

From the above examples, we see that when signatures of unknown
systems are taken and spectral density is not calculated, the randomdec
signature should be obtained for at least four periods of oscillation so

that the consistency and, hence, validity of ¢ can be determined.

es t

EXPERIMENTAL PROCEDURES

As was. shown for the autocorrelation method in reference 2, there
are many pitfalls of analysis which affect damping values obtained from
random data. These problems have been studied for the random decrement
method by analysis of computer-generated data and by experience with the
randomdec on-line computer at Ames Research Center. 1In this section the
problems are discussed and recommendations are made.

14



Calibration

Accurate measurements in any experiment require calibration of the
equipment. Figure 16 shows the steps to be taken in calibrating a ran-
domdec computerl An input test signal of a sine wave generator is needed
which covers the frequency range in which measurements are to be taken.
The figure is self-explanatory so only a few comments will be made. The
setup on figure 16 assumes that the calibration of the transducer and
preamplifier is known so that volts can be converted to physical units.
Also the frequency response characteristics of the band-pass filter (i.e.,
fig. 17(a)) should be known so that the effect of filtering can be
estimated. The amplifier should be a calibrated variable-gain amplifier
so that the averager can be operated over its full dynamic range. The
main setting of the randomdec which has to be made is to check the zero
detectors as shown. Once the band-pass filter settings are known, it is
good practice to take a signatufe of the filter using a calibrated random
input before and after a test. This is a simple way to test the filter
to make sure that it has not changed during the test. Some typical filter

sxgnatures are shown on figure 17(b).

The effects of the filter on the rms output of a single-degree-of-
freédom system should be known for the type of filter being used so that
amplifier settings can be estimated when filter settings are changed.
This is also needed to convert Y from volts to physical units. The
effect of R-C fllters on the flltered output, © F’
for various ratios of filter cutoff frequency to natural frequency of a

is shown on figure 18

single-degree-of-freedom system..

Aliasing

In reference 4 it is shown that sine waves which have frequencies
above and below the Nyquist frequency (sample rate/2) may pass through
the same points if they are taken at equal time intervals. Hence, when
data is digitized the frequency components above the Nygquist frequency
are folded back into components below the Nyguist frequency. To simulate’
this effect, a very lightly damped mode was programmed at a frequency
which would fold back on the single-degree-of-freedom system with a damping
ratio of 0.02 as shown on figure 19. It may be seen that a large error

in the measured value of damping could be caused by the folding back of
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the high—frequéncy mode. This problem is crdinarily avoided by passing
the signal through a low-pass filter prior to digitizing. The figure
serves as a reminder that aliasing is a fundamental problem which affects

randomdec as well as autocorrelation and spectral density.

Input Distortion

In reference 2, it was shown that the autocorrelation signature is
distorted by an input spectrum such as isotropié turbulence, and an
expression for the distortion was given in terms of the 3 dB frequency,

W, . Distortion measurements of randomdec signatures were made on the
digital computer and are shown on figure 20. It may be seen that the
randomdec distortion is about half the distortion with the autocorrelation
signature. 1In either case, input distortion may be avoided by measuring

damping as shown on figure 12.

Two-Mode Response

Another problem which may cause trouble in damping measurement is
the .occurrence of two modes with fregquencies so close together that they
cannot be separated without distortion by filtering. To study this
problem, thé time history of a two-degree-of-freedom system with closely
spaced natural freguencies was generated, and the randomdec signature
was computed as shown on figqure 21. A check point of the theoretical
free vibration detay curve is shown to fall on the randomdec signature.

For comparison, the autocorrelation function was calculated and it
may be seen that it differs considerably from the randomdec signature.
(Autocorrelation wasonly calculated for the range shown because of limited
computing time available.) This is probably due to cross products which
occur in the autocorrelation of closely coupled modes as discussed in
reference 7, p. 28. 1In this reference, the separation of fregquency and
damping is accomplished by taking a one-sided Fourier transform of the
autocorrelation function, and then by applying a Kennedy and Pancu analysis
in the complex plane. 1In all, three Fourier transforms are required in
the method. It appears that the randomdec method offers a much more direct
and rapid means for separating closely coupled modes. The randomdec
computation itself proceeds faster than a single Fourier transform; and,

since the signature is undistorted by cross products, a direct curve
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fitting method such as described in reference 8 may be used. (Note, a
randomdec analysis of 4098 points required 10 seconds of IBM 360 computing

time as compared to 20 seconds for a Fast Fourier transform.)

Sometimes the two-mode problem can be-solved by location of the
transducer on the node line of one of the closely spaced modes. If this
is done, then two transducers are needed to measure the damping of the
modes simultaneously. In most applications the structural modes, shapes,
and frequencies are known ahead of time and the transducer location can
be chosen to avoid response time histories with closely spaced modes.

If mode shapes are unknown, then locations must be chosen by trial and

error or by an educated guess.

Selection of Sample Rate

When a random force excites a structural mode of a given frequency,
the: output time history does not contain an infinite number of independent
points, since adjacent points are correlated. (See Appendix A.) A sine
wayé time history, for example, may be described by its amplitude and
phase and hence has only two inaependent measurements. Any curve, then,
which may be described by a Fourier series may be described by a number
of points equal to two times the number of terms in its Fourier series,
Heﬁge, if we are to extract all of the information from a time history,
weiﬁust sample at a rate equal to two times the frequency of the highest
Fourier series component. If we sample at a higher rate, the measured
points cannot be independent and some sort of averaging means must be
used to obtain the independent values. OCftentimes the sample rate is
set equal to 4 or 5 times the highest freguency of interest, since a
low-pass filter must be used to avoid aliasing and the higher sample rate
is selected to put the flat portion of the filter over the fregquency range
of interest. As shown in Appendix A, randomdec signatures are relatively
insensitive to lbw-pass filtering so that the sample rate requirements
will depend on the degree of resolution desired in the signature. For
failure detection, a sample rate of only 2 times the frequency of the
failure mode is needed?‘ For damping measurement, 16 times the freguency
of the highest mode of interest is desirable to define the signature
adequately. At the lé-times rate, the signature has a definition of 16
points per cycle, which for the 4-cycle signature recommended results in

the modest requirement of storage of a 64-point signature.
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Number of Segments

Selection of N = 500 seems to be an adequate choice of the number
of functions for an accurate signature. The effect on accuracy of more
or less functions may be estimated from Appendix A. Also, the time
required to cbtain this number of functions for planning tests may be

obtained from Appendix A.

Transducer Location

A dynamic time history from a single transducer does not necessarily
contain all of the information needed to describe the system completely.
If the measurement is taken at a node line for example, information on
that mode will be missing. Thus we see that on a structure, the resolution
of the measurement needed toc extract information on a particular mode is
very dependent on transducer location. 1If a single transducer location is
to be used, then a point must be found which has a sufficient amplitude in-
all modes of interest (e.g., a wing accelerometer would most likely be
placed near the wing tip and strain gages near the root). In many cases,
the desirable location from a resolution standpoint may not be practical
for other reasons (e.g., accessibility, nearness to noise sources or elec-
trical disturbances, extreme environment such as hot spots, etc.). In
general, we have to select the modes of interest or section of the structure
which we wish to define, and we locate our transducers at points which
emphasize this information and de-emphasize extraneous information.

CONCLUSIONS

7 Studies of randomdec signafuresAqbtained from data generated by a
digital computer and by experiments with structural models have led to
the following conclusions:

(1) For single and multi-degree-of-freedom linear systems, the
randomdec signature is equivalent to a free vibration decay curve with
an initial value at the selection amplitude.

7 (2) The randomdec signature provides a curve which is stable in
form and $cale under a wide range of ambient vibration conditions and as
such has application as a failure detector and as a damping measurement
method. B ’ '
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(3) For narrow-band time histories, the randomdec signature compu-
tation is statistically more efficient for failure detection and damping
measurement than spectral density or autocorrelation, and hence is more
suitable for on-line application to these problems.

(4) Experimental examples of failure detection indicated the feasi-
bility of detecting loose joints and incipient structural failure. However,
considerably more experimental work is needed to define the optimum trans-
ducer locations and frequency rahgé needed to detect a particular flaw to

a given sensitivity.

{5) Experimental examples of damping measurement indicated that
damping of an isclated mode could be measured and that the precision of
the damping measurement could be specified. For modes which are close in
frequency, the beat phenomenon was detected and a means for separating the
damping ratios and frequencies was indicated. Further work is needed to
define the limitations and precision of measurements for the multi-m&de

case.

Nielsen Engineering & Research, Inc.
. Mountain View, California
. October 25, 1972
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APPENDIX A

STATISTICAL PROPERTIES OF RANDOMDEC SIGNATURES

The randomdec process evolved as a result of experiments in strati-
fication of autocorrelation functions of the response of nonlinear systems :
to random inputs. Sdme bf this work has been published in reference 2 and E
some was used just to deVelép the concept. When it was found that randomdec :
gave unique signatures under a wide range of conditions, it was decided
that the priméry need in its application was to define its statistical
properties. For this purpose a digital program in Fortran IV was written
for the Ames Research Center IBM 360-67 computer. The program had the
capability of generating random inputs and the response of linear systems
including R-C filtering, and calculating from this time history randomdec
signatures, standard deviation, autocorrelation, and spectral density.
Figure 22 shows a typical narrow-band time history generated by the program
and one measured or.a model in a wind tunnel. The time histories generated
by the computer program appeared to be realistic simulations of the time
histories which were encountered in practice. The advantage of computer-
generated data was that the exact properties of the system were known and ._
could be compared with values obtained from signatures of the random output

time history.

Most of the work was conducted on a linear sinéle—degree-of-freedom
system which admittedly is an idealized problem, but it does form the
foundation for development of the concept. Figure 23(a) shows part of a
time history which was generated for a single-degree-of-freedom system
with a damping ratio of 0.02 and a period of 16 time units. Two randomdec
samples are shown for illuétration. The first one G(l6), is measured 16
time units after y <crosses Ve with a positive slope. The second one,
H(16) is measured 16 time units after y crosses Y with a negative
slope. Figure 23(b) shows the average of all such samples over a record
length of 4098 points for sample lags, @, from 1 to 24. This is called
the "randomdec signature". The point for Q = 16, AVT(16), is used to
check the signature measured damping against the exact value. For a
damping ratio of 0.02, AVT(l6)/yS should be 0.88. Average of plus-slope

values (AVG) and minus-slope values (AVH) is also shown.
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Appendix A

Before the above comparison can be made with significance, the
distribution and independence of the samples must be‘eétablished.
Figure 24 shows the cumulative distribution of a typical set of samples
of the G(16) and H{1l6) values plotted on normal probability paper. (See
reference 9, p. 56.) The closeness to the straight line indicates that
the distribution is approximately normal. The figure also shows that
the mean value is approximately equal to 0.88 of 'ys, which is the wvalue
expected for ¢ = 0.02. Also the standard deviation (ce) of the measured
values is seen to be 2.8 by the intersection of the 1o (84 percent)

value.

Since a certain amount of overlap occurs in the randomdec sampling
process (i.e., when Ye is near a peak, G and H vaipes are nearly
the same), the degree of independence was checked as shown on figure 25 (a)
for y_ = 0; 25(b) for Yg = 0,r and 25(c) for yé = 20y. Linear regres-

s
sion lines, ﬁc and 5 were calculated as shown (ref. 9, pp. 191-204).
The square root of the product of the slopes gives a correlatlon coeffi-
cient estimate of r = ~-0.38, 0.15, and 0,71 for the three selection

levels. Hence, when the selection level Y is near the rms level of

the signal, the measurements taken following a plus slope and then a minus
slope on the same peak are nearly independent (small r). For low and high
levels of Ygr the measurements on the same peak tend to become more

dependent.

Figure 26 shows the reason for the increése in correlation at the
high and low selection levels. At the 20y level the plus- and minus-
slcope samples tend to be taken near peaks most of the time, which tends
to make the time difference between G(16) and H(1l6) samples small; and
since the physical system cannot move very far, the values tend to be
correlated. At the zero level, the samples tend to be separated in time
by one half a period, and because the process is narrow band, the G(16)
and H(16) values tend to be of opposite sign and of similar value which

results in the negative correlation of figure 25(a).

In an on-line computer, the time overlap in the sampled segments of
the time history leads to some complication. If the speed of obtaining
the signature is not critical, segments may be taken without overlap. For
example, on figure 3, instead of taking the segments shown, one would
take the plus-slope segment starting at t,, then the minus-slope segment
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Appendix A

starting at t,  and so on. Figure 27 shows the correlations of samples
taken in this wav and it may be seen that the correlation estimate is

quite small (r = 0.08).

With the distribution and dependence of samples established, a
hypothesis test of randomdec was conducted using 25 independent cases of
4098 points each of random inputs with a normal distribution and a stan-

dard deviation of 1. The confidence boundary is given by

co, c = 2.05 (96% confidence)
0.88 + : (A-1)
ys'v (2 - r)K c = 2.88 (99.6% confidence)

where O is the standard deviation of the randomdec process, r 1is the
correlation estimate, and X is the number of peaks encountered at the
selection level. Note that (2 - r)K is an estimate of the number of
independent samples and that in this case r 1is an average of values
which range from 0 to 1 depending on wheﬁher the selection level was nhear
or far from the peak. The linear weighting was selected as a first-order
approximatién. As shown on fighfe 28, about 8 boints occurred at the
96-percent confidence level compared to 10 expected and 1 point at the
99.6-percent level compared to 1 expected. Hence, in the 250 cases cal-
culated no significant evidence has been found to justify rejection of the

hypothesis.

During the hypothesis test, it was noted that when AVT(lG)/ys was
above 0.88, the rms cf the output (cy) tended to be high and vice versa.
To show this effect a different symbol was used depending on whether qy
of the case was above or below the average of the 25 cases (oy). The
predominance of the circles above 0.88 and squares below is apparent.

This trend indicates that when the rms of the output is higher than usual,
the signature will tend to give a value of damping ratio yhigh is too
small and vice versa. This effect is a result of the accidental time

sequence of the amplitudes of the random inputs in finite time.

From the above it appears that the signature of a single-degree-of-
freedom linear system excited by wide-band random noise is equivalent to
the free vibration decay curve with an initial displacement. In practice
we often encounter systems excited by band-limited noise; or in order to
obtain an effective single degree of freedom, the time history has to be
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filtered. The question is "What effect does filtering have on the signa-
ture?” In order to evaluate this, a particular case of 4098 random inputs
to the single-degree-of-freedom system with a damping ratio of 0.02 was
selected for the filter studies. The program was capable of filtering the
time history in any combination of high- and low-pass R-C filters cascaded
and with varying cutoff frequencies (w, 1is defined as the half-power or

3 dB point frequency of the filter). Figure 29 shows a typical distortion
effect of a low-pass filter. Distortion\}s judged by the change from the
unfiltered signature at the 1/2, 1, and 1-1/2 period points (Q = 8, 16,
24, respectively). )

Figure 30(a) shows the effect of a low-pass, single-pole filter and
it may be seen that little or no distortion occurs for filter frequenéies
as low as two times the natural frequency of the system. A similar effect
on the signature would occur if instead of filtering the output, the input
to the system were isotropic turbulence with a half-power point at w, .
Inijudginé the distortion, it should be noted that a very sensitive scale
has been used on the figure and that even at wl/u,)n = 1, the distortion is
actgally only 1 percent of the selected level (ys).

Similar results are shown in figure 30(b) for a cascaded low-pass
filter which gives somewhat greater distortion. However, it must be
remembered that these are the basic distortions of the filter on the
system and that in actual practice the off-resonant effects of other modes
can also distort the signature. The distortion caused by the filter must
be weighed against the distértions of extraneous modes which it eliminates.
This is beyond the scope of the present rebdft”ahd_is only mentioned here
to put the results in the proper perspective.

Figure 30(c) shows the results which were obtained with a high-pass,
double-pole filter. Some distortion is evident at Q = 16, but this is
small, being only a little greater than 1 percent of the selection level.
The basic distortions of the high-and low-pass filters (fig. 30) serve as
a guide to filter selections in specific applications. It appears that
distortion is not a serious problemrekcepérin the extreme cases mx/wn =
0.5 for Fhe low-pass, sing%e-pole filter and ml/mn = 1 for the low-
pass, double-pole filter.
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The objective of this study was to develop expressions for record

length needed to obtain signatures of a given precision relative to the

selection level. The latter part of this statement has been underlined

to emphasize the difference between the approach used here, and the usual
approach in spectral density and autocorrelation. The expressions in
reference 4 give the standard deviation of the individual points on the
signature rather than the standard deviation of the individual points

relative to a reference level as given here. This distinction is very

important in precision measurements of damping ratio and is particularly
critical to the uniqueness of the signature of a system with nonlinear

damping under variable input conditions.

Solution of the record length problem requires knowledge of the
aeffects of filtering and damping ratioc on the standard deviation of the
signature. Figure 31 shows these for the filters discussed in the previous
section and for the unfiltered case with various damping ratics. As may
be seen, the standard deviation is insensitive to these variables to a
+10-percent level with the exceptibn of the extreme filter settings which
may be excluded because of their high distortion. These characteristics

of randomdec greatlyv simplify the solution to the record length problem.

Another variable which has to be considered is the selection level,
Ye- Figqure 28 shows the effect of this variable. The ordinate is
AVT(lG)/yS so the dispersion seen is in fractions of thé selection level.
For low selection levels, the scatter increases because the standard
deviation, although nearly constant, becomes a larger fraction as selection
level becomes lower. As selection level increases, the fractional error
decreases, but the number of peaks encountered beccmes fewer until finally
the dispersion increases again. The fractional accuracy of the signature

Fg may be expressed as

Co -
F_ = £ (A-2)

* vy, V(@ -nx

where C 1is the level of confidence factor, O is the standard deviation

of the signature point (Q = 16}, Ye is the selection level, r 1is the
correlation coeffipient, and K is the number of peaks encountered.
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Figure 32 shows a relation for the number of peaks expected in a
given time for filtered and unfiltered cases. It may be seen that the
measured number of peaks from the computer runs agrees reasonably well
with a predicted curve based on a Rayleigh distribution of peak values.

The number of peaks encountered is:

K = f Te v ’ (A-3)

F = € . ’ (A"4)

s
Yg V (2 - r)fnT

Froom figure 31 we see that allowing deviations of :10 percent that

g
£

= 0.47
(o] .
yf¢= 0.02

Sihce on figure 31(b) it is seen that O is only weakly dependent on

T, we may write

2
Yg \
O —t—
Y, _ (20 /
0.47 c(}.ii:ﬁ;ﬂ%) c e Y
; . Uy Y )
F = ’ (A~5)

s ' V- nE T

anéd using the relations for Oy from reference 2,

o

Yig=0.02 _ Z
a, 0.02
y .
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and substituting in (A-5)

y
F =2.35C f(—s>]‘\/3‘:— (A-6)
S [ oy fnT

in which

()

fi’_s- = € Y = I,
OY ys

This factor which is a function of vy_/o_. only varies by 25 percent
s Y

for ys/oy values from 0.7 to 2. This means that, for a fixed- Ygr the
random input, O could vary by a factor of 3 without having much effect
on the accuracy at constant record length. Note that r was also a
function of ys/cv as was shown on figure 25.

Solving for record length, we have:

o = L0ZL {j;]z (A-7)

in which L is the function of ys/oy given below: -

ys/cX .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
L 20 | 4.9 | 2.4 | 2.5 { 1.1 {1.0 1.0 |21.2 | 1.4 | 1.8
C = 2.06 (96% confidence level)
1.%6 (95¢ confidence level)
1 (68% confidence level)

) When measuring damping ratio, the reference length for fractional
accuracy is '2ncys rather than Ygr Record length then becomes: '

' L [c]? o
T o= o | . (A-8)
izt [FC] o : ,
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in which . -

FC = fractional accuracy in damping ratio

NOTE: If no overlap is used, above equations should be multiplied by 2.

In using this equation for planning damping measurements, we must
select the lowest damping ratio () which we wish to measure, the con-
fidence level, and the accuracy desired. To minimize testing time, a
selection level of 1.2 to 1.4 should be used so that I will be at its
minimum value of 1. If the system has nonlinear damping, L must be
selected to cover the range of amplitudes desired. 1In tests which are
extremely costly or dangerous, the damping ratio should be monitored
on-line and record length determined on-line from the equation. Such a
procedure could result in a considerable cost saving and reduction in
risk in wind-tunnel and flight flutter-bdffet tests.

The above equations glve the ba51c time needed to obtaln 51gnatures
band-limited Gaussian noise. In practice, additional variance may be
introduced by added noise and inaccuracies in starting times at the
selection level. Also, when more than one degree of freedom is present,
the signatures contain contributions from all of the modes. This does
not cause serious problems in failure detection, but it may require
further processing of signatures when damping of individual modes is

needed.

hs

It is interesting to compare the above result with the equation for

autocorrelation derived from reference 4, page 195

R?(0) + R*(t?) (A-9)
2
47e cfn

T =

As [ approaches zero, we note that the time reguired for a ran-
domdec signature, equation (A-7), .approaches zero as compared to time
required for autocorrelation, equation (A-9), which approaches infinity.
The reason for this difference is that randomdec has a fixed amplitude
reference so that as' [ approaches zero and the time history becomes
essentially a sine wave in a finite record, only a very short record is
needed to define the signature. The autocorrelation on the other hand
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has a variable amplitude reference which increases with the inverse of
the damping ratio and thus an infinite record is needed to define the

signature.

Using equation (A-7), we may cbtain a rule-of-thumb number of segments
needed for 5-percent accuracy at 95-percent confidence level, Yg set at
cy and § < 0.025. ’

_ 1.9612 _
TE_ = (10) (0.025) (1'1’{6".'0'1-3'1 = 422

Using equation (A-3) for the number of peaks and noting that there are two
segments per peak, we obtain

(2) (422)

N = 2K = —1775

= 500

which is the number of segments which was found experimentally to give

[y

signatures with small variance in reference 6.
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APPENDIX B

COMPARISON OF RANDOMDEC AND AUTOCORRELATION SIGNATURES

In Appendix A it has been shown that to a 99.6-percent confidence
level that the randomdec signature has the same form as the free vibration
curve of a linear single-degree-of-freedom system with an initial dis-
placement. Reference 2 shows that the autocorrelation function gives this
form too in the limit as record length approaches infinity. It appears,
then that randomdec and autocorrelation signatures are identical in form
but not in scale for linear single-degree~of-freedom systems excited by
white noise. The question is "Are autocorrelation and randomdec signatures

the same or are there significant differences?"

Figure 33 shows a comparison of values at the 1P point for auto-
correlation and randomdec signatures of a single-degree-of-freedom system.
The circled symbols represent the white noise input, and it may be seen
that although agreement is fairly good that there are significant differ-
éﬁées between signatures when record length is finite. Also shown on this
figure are the effects of change in damping ratio and the filters used
in fiqure 30. Again geheral agreement is good, but referring back to
figure 20, it may be seen that distortion due to filtering is generally
less for randomdec than for autocorselation signatures. This might be
significant in some applications, but generally speaking, there does not
seem to be a significant difference between the two for the linear single-

degree-of-freedom case.

Computationwise there is a very significant difference between the
two signatures. For a record length of 4098 points, the randomdec calcu-
lation required 315 operations per point as compared to 16,321 for direct
autocorrelation. The computational advantage of randomdec is not so
great if autocorrelation is calculated by the Fast Fourier Transform. 1In
this case, randomdec is about four times faster.

The computational advantage of randomdec becomes more and more
significant as damping ratio decreases as shown on figure 33. This is
a plot of the standard deviation of the 1p point on the signature with
a fixed set of 4098 random inputs. As damping rktio varies, it may be
seen that the standard deviation of the randomdec remains approximately
constant while the standard deviation of the autocorrelation signature

approaches very large values.
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Perhaps the most significant difference between the two signatures
is shown on figure 21, which shows a dramatic difference for the two-
degree-of-freedom case. This result definitely establishes randomdec
as a distinctly different signature from autocorrelation. From unpub-
lished work with nonlinear systems, it is known that significant
differences occur for systems with nonlinear damping, but this is beyond
the scope of the present work.
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After local structural failure

Figure l.- Autocorrelation signature of strain
gage output observed on an Apollo wind
tunnel model during test.



Given: Random Response (Input Unknown)

Dynamic Signatures:

Spectral Density G(f)
N T ?
ale) = ¢ ) 2 [y(t)e'l”ftdt
n=1 o
lim N-»wx -
0 f
R(1)
Autocorrelation ;T

: N\
R(1) = lim % jp yvi{t)y(t+1)dt 0 \‘///’\ T

Random Decrement

Yo =Y - ¥Yg
§(1)
L 0 B
81 = § ) yolty + 1)
n=y . _ys = T
with corditions

t. =t when Yo = 0

Figure 2.- Typical characteristic structural signatures
obtained from a random response.
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Random S,
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]
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————ee—u Failure mode effect
‘Hypothesis:

(1) Flaw introduces additional degree of freedom.

(2) Frequency of flaw mode decreases as flaw size grows.

(3) Flaw mode causes change in signature by:
(a) Dynamic coupling with modes in filter

bandwidth.

(b) .Nonlinear coupling at subharmonic freguencies.

(c) Friction damping.

Figure 5.~ Hypothesis on the sensitivity of
random decrement signatures to flaws.
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Figure 6.- On-line failure detection at a
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(b) Spectral density of accelerometer output.

Figure 7.- Experiment with truss
(angle steel with bolted joints).
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{c) Spectfal density with band pass
filter 600-800 Hz.

Figure 7.- Continued.
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Bolts loose

(d) Randomdec with band pass
filter 600~-800 Hz.

(e) Randomdec with band pass
filter 1100-1300 Hz.

Figure 7.~ Concluded.
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Figure 8.- Evolution of the random decrement signature
of a wing model approaching complete failure.
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Figure 8.~ Concluded.
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Figure 9.- Samples of time history of strain gage
output at times when signatures of figure 8
were taken (filter band-pass 200-1500 Hz}.
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Figure 10.- On-line damping measurement

display (no distortion).
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Figure 1ll.- On-line detection of nonlinear
effects with amplitude.
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Number of cycles, N

Figure 13.- Alternate method for estimation of
damping ratio including distortion estimate.
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Figure l4.- Example of damping measurement
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(a) Spectral density.

Figure 15.- Example of damping measurement of two modes
with nearly the same natural frequency.
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(a) Frequency response.
1.0 T T T I M
0.8 7 21 = 16 ) e
Tw,
0.6 |-
6 Low pass, single pole
0.4 [
AVT(Q)
Ys 0.2 |~
0 —
-0.2 |-
High pass, double pole
~0.4 | ! ] | i

0 4 8 12 l6 20 24
' Q

(b) Randomdec signatures.

Figure 17.- R-C filter characteristics.
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Figure

18.- Effect of filtering on RMS of output.
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© Single mode at f

[J Two modes, £,
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Figure 19.- Effect of aliasing on andomdec signature
for y_ = oy, M = 4098, { = 0,02,
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Figure 20.- Comparison of distortion effect of isotropic
turbulence input spectrum on autocorrelation
and Randomdec signatures.
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(a) Part of time history.

Randomdec signature O Slope + at y = y,
(mean value) .

O slope - at Yy =v,

AVG

(b) Average of 222 segments of time history
with initial value egqual to Ygr

Figure 23.- Plot of computer program output
(¢ = 0.02, unfiltered, M = 4098).
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Figure 24.- Cumulative distribution of G(16) and H(l6) values
for Yo = °y plotted on normal-probability paper (K = 96).
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Figure 25.- Correlation of + slope values with
- slope values at T = P. -
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Figure 25.~ Continued.
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(c) Vg = 2°y'

Figure 25.-~ Concluded.
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Figure 26.- Effect of selection level near a peak and
at zero for a lag of one period (f{ = 0,02).
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Figure 27.- Correlation of ‘randomdec at 1P with starting
points of a plus and a minus slope on adjacent
peaks (ys i 2oy).
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Figure 28.- Hypothesis that random decrement in the limit
gives exactly the free vibration decay value at a lag of
one period (P - Q=16, ' = 0.02, M = 4098) .
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Figure 29.- Effect of low-pass R=C filter on randomdec
signature for vy = oy (( = 0.02, M = 4098).
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(a) Low-pass, single pole.

Figure 30.- Distortion of signature at 1/2, 1, and 1 1/2-period

points due to R-C filters (M = 4098, { = 0,02).
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(b) Low=-pass, double pole.

Figure 30.- Continued.
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Figure 31.- Variation of standard deviation of Randomdec
with filtering and damping ratio.
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;Figure 32.- Measured and predicted time factors,
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Figure 33.- Comparison of random decrement with autocorrelation

values at a time lag of one period.
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Figure 34.- Standard deviation of randomdec and
autocorrelation for various damping ratios.
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